MuProp: Unbiased Backpropagation for Stochastic Neural Networks

نویسندگان

  • Shixiang Gu
  • Sergey Levine
  • Ilya Sutskever
  • Andriy Mnih
چکیده

Deep neural networks are powerful parametric models that can be trained efficiently using the backpropagation algorithm. Stochastic neural networks combine the power of large parametric functions with that of graphical models, which makes it possible to learn very complex distributions. However, as backpropagation is not directly applicable to stochastic networks that include discrete sampling operations within their computational graph, training such networks remains difficult. We present MuProp, an unbiased gradient estimator for stochastic networks, designed to make this task easier. MuProp improves on the likelihood-ratio estimator by reducing its variance using a control variate based on the first-order Taylor expansion of a mean-field network. Crucially, unlike prior attempts at using backpropagation for training stochastic networks, the resulting estimator is unbiased and well behaved. Our experiments on structured output prediction and discrete latent variable modeling demonstrate that MuProp yields consistently good performance across a range of difficult tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiasing Truncated Backpropagation through Time

Truncated Backpropagation Through Time (truncated BPTT, Jaeger (2005)) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of Backpropagation Through Time (BPTT Werbos (1990)) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the grad...

متن کامل

Supervised Models C1.4 Stochastic neural networks

Deterministic neural networks such as backpropagation of error, multilayer perceptrons, and locally based radial basis methods have been a major focus of the neural network community in recent years. However, there has been a distinct, albeit less pronounced, interest in stochastic neural networks. In this review we provide the reader with a sense of the defining components of a stochastic neur...

متن کامل

Unbiasing Truncated Backpropagation Through Time

Truncated Backpropagation Through Time (truncated BPTT, [Jae05]) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of Backpropagation Through Time (BPTT [Wer90]) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the gradient estimat...

متن کامل

Unbiased Online Recurrent Optimization

The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is computationally as costly as Truncated Backpropagation Through Time (truncated BPTT), a widespread algorithm for online learnin...

متن کامل

Unbiased Online Recurrent Optimization

The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is computationally as costly as Truncated Backpropagation Through Time (truncated BPTT), a widespread algorithm for online learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.05176  شماره 

صفحات  -

تاریخ انتشار 2015